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CHAPTER 28

Microbial ecology of wine

E. Vaudano, A. Costantini, and E. Garcia-Moruno

Consiglio per la ricerca in agricoltura e lanalisi delleconomia agraria, Centro di Ricerca per l'Enologia (CREA-ENO), Asti, Italy

28.1 Introduction

Wine quality depends on many factors, the
microorganism’s activity being one of the more
important. A wide diversity of microorganisms,
yeasts, and bacteria are involved in winemaking
and, thus, determination of the composition and
evolution of the different species present during
this process would clearly help to increase the
quality of a wine.

After confirmation of the role of microor-
ganisms as responsible for the alcoholic fermen-
tation by Pasteur in the nineteenth century, the
predominant role of the genus Saccharomyces,
mainly the species S. cerevisiae and S. bayanus,
on the complete fermentation of the grape sugars
became clear. However, nowadays it is known
that the grape-wine ecological habitat has a
much more complex microbial biodiversity.

Several highly specialized species of yeast
and bacteria are active in different phases of the
fermentation and contribute to the transforma-
tion of grape juice to wine. During winemaking,
the biodiversity initially present on the grape
surface and in the early stages of fermentation
tends to decrease as the ethanol content,
the main limiting factor during fermentation,
increases. Generally, at the end of the fermenta-
tion, exclusively S. cerevisiae and S. bayanus, the
best adapted species to high ethanol content in
the medium, are found. Despite this, the con-
tribution of the so-called non-Saccharomyces
species present at the start of fermentation and
their concentration variation until the final

dominance of S. cerevisiae can be crucial in
determining the quality of the wine (Fleet, 2003;
Jolly et al., 2006).

Malolacticfermentation (MLF)isabiochemical
transformation conducted by lactic acid bacteria
(LAB), which usually takes place after alcoholic
fermentation during winemaking, and is gener-
ally desirable in the production of red wines, as
well as in some white wines. MLF produces a
biological deacidification of wine by transform-
ing malic acid in lactic acid, with a consequent
increase in the pH; it also contributes to the
microbiological stability of wine and leads to the
production of many secondary compounds that
induce changes in the organoleptic properties of
the wine (Davis et al, 1986; Lonvaud-Funel,
1999; Ugliano et al., 2003). This process can
be conducted by LAB belonging to the genera
Oenococcus, Lactobacillus, and Pediococcus
(Wibowo et al., 1988); however, the main agent
of MLF is Oenococcus oeni, because of its ability
to grow in the particular conditions of wine,
which are a high ethanol content, low pH, and
the presence of SO, (Wibowo et al., 1988; Davis
et al., 1988; Kunkee, 1991).

28.2 Biodiversity of grape
microorganisms

Several studies over the past 10 years have
shown that the biodiversity and the quantity
of the microorganisms present on the surface of
the grape berry is highly dependent on many
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factors, including the health state of the grapes,

the climate temperature, and the pesticide treat-

ments. Recent works seems to confirm that the

“terroir” idea should be extended to the micro-

biological aspect, that is, that the geographical

distribution of the organisms associated with
grapes is not randomly dispersed but is
dependent on the cultivar, the location of the

vineyard, and the vintage (Bokulich et al., 2014).

Recently, it has been reported that while
yeast counts fluctuated between 10% and 10° in
healthy grapes, it is two orders of magnitude

higher in damaged berries (Barata et al., 2012).

The number and type of species of yeasts are

strongly influenced by the grapes health, as it

influences the access of microorganisms to the
nutrients of the juice.
Three groups of yeast can be distinguished

on the grape surfaces (Barata et al., 2012):

1 An oligotrophic group with oxidative metab-
olism represented by Basidiomycetes, such
as Cryptococcus spp. and Rhodotorula spp.,
which dominate the surface poor in nutrients
of the sound berry.

2 A group of ascomycetes with an oxidative, or
weakly fermentative, metabolism represented
by Metschnikowia pulcherrima and some
species of the genus Candida, Hanseniaspora,
and Pichia, being H. uvarum, the yeast most
frequently detected. These species increase
their presence and become dominant during
ripening.

3 A strongly fermentative group is detected on
the surface of damaged berries, which, as
commented above, used to have a greater
number of yeast cells. Although basidiomy-
cetes and ascomycetes oxidative yeasts are
also present, usually, under this condition,
the predominating species are strong fer-
menting yeasts, such as Zygosaccharomyces
spp. and some species of Candida and
Torulaspora. Interestingly, it has been
described that some yeasts are frequently
associated to fungal grape diseases. For in-
stance, M. pulcherrima and Candida zem-
plinina are recurrently found in botrytized
grapes and juices (Sipiczki, 2003, 2006).

S.cerevisiae, which predominates during
alcoholic fermentation, is rarely found on the
surface of the berry. This fact supports the view
that the winery environment, and not the vine-
yard, represents the natural habitat of this yeast
(Martini, 2003).

On the other hand, and since LAB are minor
partners of the grape microbiota (the initial
LAB population in wine grapes is low, around
10*cfu/g, Bae et al, 2006), few studies have
focused on the bacteria associated with grapes.
For example, Lactobacillus plantarum, L. casei,
L. brevis, L. hilgardii, L. curvatus, L. buchneri,
Leuconostoc  dextranicum, and Leuconostoc
mesenteroides were inconsistently isolated from
several grape varieties harvested from vineyards
in Spain (Sieiro ef al., 1990; Suarez et al., 1994),
France (Lafon-Lafourcade et al, 1983), and
Germany (Weiller and Radler, 1970). Moreover,
most studies have failed to detect O. oeni in
grapes or vineyards (Bae et al, 2006; Lafon-
Lafourcade et al., 1983; Renouf et al., 2007),
despite its frequent isolation from winery envi-
ronments after fermentation (Edwards et al.,
1991; Garijo et al,, 2009).

One of the few common enological bacteria
detected on grape skins is Gluconobacter oxydans
(Renoufetal.,2007), anacetic acid bacteria (AAB),
an important group of bacteria in the food
and beverage industry, which can oxidize ethanol
to acetic acid. AAB are ubiquitous and have
also been found on grapes (Bartowsky, 2008;
Bartowsky and Henschke, 2008; Gonzélez et al,
2005; Valera et al., 2011). Up to 10° cell/g of AAB,
mainly Acetobacter, can be found in damaged
grapes (Joyeux et al., 1984).

28.3 Microorganism ecology
in winemaking

The microbial composition of grape must after
crushing reflect the composition on the berry
surface at harvest. Later, the availability of nutri-
ents and the high concentration of sugar pro-
mote the growth of fermentative species, while
the others tend to succumb or be inactivated.
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Numerous variables define the ecological
mosaic of fermentation and several works
have analyzed the microbial development under
different fermentation conditions (Fleet, 1993;
Torija et al., 2001; Beltran et al, 2002; Van
Keulen et al., 2003; Di Maro et al., 2007; Bezerra-
Bussoli et al., 2013).

28.3.1 Yeast ecology

Taking into account a spontaneous fermenta-

tion of grapes, that is, without the massive

inoculation of selected strains of S, cerevisiae
that upsets the natural ecology in winemaking

(whose advantages and disadvantages are cur-

rently subject of discussion), the following

ecological phases can be outlined:

Phase 1: Crushing. The microbial composition
in crushed, and eventually in pressed grapes,
reflects that of the grapes they come from.
Among these species, those able to grow
in the grape must be able to do so because
of their fermentative metabolism and are
relatively few in number; the most frequently
found are M. pulcherrima, some Candida
species, including C. stellata, and H. uvarum.
S. cerevisiae is usually present at very low
concentrations in the must.

Phase 2: Initial phase of alcoholic fermen-
tation. In this step the growth of non-
Saccharomyces species is favored by their
initial concentration and fermentative metab-
olism, and their persistence is dependent on
the ethanol resistance of single species. For
instances, M. pulcherrima succumbs above
2-3% ethanol, while Candida and, especially,
K. apiculata can survive at up to 6-8%. During
this stage S. cerevisiae grows quickly until it
gradually becomes the dominant species.

Phase 3: Prevalence of Saccharomyces.
Although some species such as C, stellata can
resist high concentrations of ethanol, the
exponential growth of S. cerevisiae tends to
dominate the fermentation, being usually the
only species detected by the end of the pro-
cess. The concentration of §. cerevisiae can
reach in the order of 10® in 5-6 generations,
and it can complete the fermentation of grape

musts under sugar concentrations greater
than 250g/1. Even though, at this stage, a great
biodiversity of S. cerevisiae species are pre-
sent (Valero et al., 2007; Schuller et al., 2005),
the fermentation is mainly conducted by a
small number of strains. (Versavaud et al.,
1995).

Numerous factors can affect both the number
and the charge of the species present during the
winemaking process, especially among the non-
Saccharomyces yeasts.

The harvesting system, manual or mechanical,
can determine major or minor damage to the
berries and modify the composition of the initial
microbial load in the must, especially if the time
interval between harvesting and crushing is
delayed (Boulton et al., 1996). Some antifungals
used against Botrytis seem to favor the growth of
Metschnikowia pulcherrima in must (Regueiro
et al., 1993). Cold settlement of must in the pre-
fermentative step and low fermentation tempera-
tures commonly represent growth advantage for
non-Saccharomyces, such as Candida spp. and
Hanseniaspora uvarum, while high temperatures
promote S, cerevisiae growth (Hierro et al., 2006).

During fermentation, ethanol concentration
is the most prominent variable that determines
the temporal sequence of yeast species pre-
dominance; only a few can grow above 10% v/v,
such as some species of Candida, Ti orulaspora,
Zygosaccharomyces, and Schizosaccharomyces
pombe.

The sulfur dioxide content affects the
amount of Basidiomycetes present after crush-
ing, but has less influence on the fermenta-
tive yeasts, with S. cerevisiae usually being less
sensitive than the non-Saccharomyces spp.
(Rementeria et al., 2003).

Another important factor is the period at
which fermentation takes place. When con-
ducted at the beginning of the harvest time the
influence of the vineyard microflora is greater
than at the end, since, as S. cerevisiae is
strongly implanted in the winery (on tanks
and equipment surfaces), it quickly overcomes
the non-Saccharomyces species (Ribéreau-
Gayon et al., 2004).
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28.3.2 LAB ecology

Grape must frequently contains bacterial species,
10>~10°cfu/ml, of the genera Lactobacillus,
Pediococcus, Leuconostoc, and Oenococcus
(Costello et al., 1983; Fleet et al., 1984; Pardo and
Zuniga, 1992; Fleet, 1993; Fugelsang and
Edwards, 1997).

During the first days of alcoholic fermenta-
tion, LAB can increase to a maximum of 10*cfu/
ml, and then decline due to the presence of SO,
the ethanol content, and the competition with
yeasts (Fugelsang and Edwards, 1997). At the
end of the alcoholic fermentation, the bacteria
population increases again, up to the 10°cfu/ml
necessary to start MLF,

A crucial factor in this phase is the pH, as it
determines the species of LAB present in wine;
usually O. oeni is the only one present in wines
having pH below 3.5, while a higher pH promotes
the growth of Lactobacillus and Pediococcus spp.
(Davis et al., 1986). In fact, a recent study by Juega
et al. (2014) showed that bacteria isolated in
Albarifio and Caifio wines, with a pH of about 3.6,
were Pediococcus spp., which successfully perform
MLEF on the wine without negative effects.

28.4 Microorganism ecology
during aging

After alcoholic and malolactic fermentations,
the reduction of nutrients and fermentable
compounds, together with the racking, fining,
and filtration operations and storage during
the aging of wine, tend to drastically reduce the
load of microorganisms in wine. After these
two fermentations, with a few exceptions
related to the particular typologies of some
wines, any residual microorganism should be
considered a contaminant and should ideally
be absent. Even S. cerevisize must be consid-
ered as a spoilage yeast, for example, in the
elaboration of sweet dessert wines, due to its
capability to ferment residual sugar and, thus,
to alter the quality of the wine. Normally, in the
case of dry wines with alcohol contents greater
than 12-13%, few microorganisms are able to

survive and to be active. In the undesirable
case of tanks not properly dried after being
washed, some species of Candida spp. and
Pichia spp. are able to form films that, if not
eliminated, can produce high amounts of acetic
acid and other substances with a negative
sensorial impact. Yeast of the genera
Zygosaccharomyces, particularly Z. bailii and
the specie Saccharomycodes ludwigii, can
cause refermentations in wines with residual
sugar contents due to their resistance to high
concentrations of ethanol and SO, (Loureiro
and Malfeito-Ferreira, 2003).

The genus Brettanomyces/Dekkera is prob-
ably considered the most detrimental contami-
nant microorganism for the quality of red wine.
Several studies conducted worldwide (Chatonnet
et al., 1995; Gerbaux et al., 2000; Suirez et al.,
2005) have shown that the presence of this
microorganism in the wine field is a stringent
problem. Currently, the genus Brettanomyces,
anamorph of Dekkera, includes five species, with
Brettanomyces bruxellensis being the most
common in wine (Henick—Kling et al., 2000;
Kurtzman et al., 2011).

Brettanomyces were isolated in equipment,
walls, floors, and oak barrels used in the winery.
The contamination by this yeast is usually
manifested after alcoholic and malolactic fer-
mentations, mostly during aging in barrels
(Chatonnet, 2000). These yeasts have the capa-
bility of growing under very wide ranges of tem-
perature, acidity, sulfur dioxide, and ethanol
(Gerés et al., 2000; Silva et al., 2004), frequently
remaining in a latent state, ready to grow when
the conditions become favorable and reaching
concentrations of 10*~10° cells/ml. From the
sensorial point of view, Brettanomyces growth
is detrimental for the wine’s quality, due to
the appearance of strong, unpleasant odors,
described as horse sweat, band aid, or burnt
plastic. These sensorial faults are mainly caused
by volatile phenols produced by this yeast,
starting from phenol precursors present in wine.

Moreover, poor management during bottling
and storage of red wine can also give rise to
spoilage by Acetobacter pasteurianus (Bartowsky
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and Henschke, 2004, 2008), with the undesirable
production of acetic acid. Du Toit et al. (2005)
isolated AAB in tanks and barrels, thus showing
that these bacteria can survive in quite low
oxygen availability. Different authors (Waters
et al., 1996; Caloghiris et al., 1997; Bartowsky
and Henschke, 2008) suggested that the oxygen
permeation of the natural cork can facilitate
the formation of the neck ring deposit in the
bottles.

In addition to AAB, some LAB can also
cause spoilage in wine and give some faults to
wine; for example, some species of Pediococcus
damnosus and Pediococcus pentosaceus can
produce exopolysaccharides, molecules impli-
cated in ropiness (Lonvaud-Funel et al., 1993;
Fugelsang and Edwards, 1997), while some
Lactobacillus can, for example, degrade the
glycerol with the subsequent production of
acrolein, implicated in the development of bit-
terness in wine.

28.5 Microbial identification
by classical methods

The adoption of appropriate methods of micro-
bial identification is essential to study the
presence and evolution of the microbial species
during the winemaking process. Classical
identification techniques based on morpholog-
ical, physiological, and biochemical essays
(Barnett et al., 1990; Kurtzmann ef al,, 2011)
have been largely overcome in the last two
decades by molecular analysis based on the
microorganism’s genome. Major criticisms of
the traditional methodologies are the time
needed to get results and their reliability and
reproducibility. In fact, phenotypical assess-
ments based on morphological and biochemical
traits are influenced by the physiological state
of the cells.

However, some classical methods are still
used, allowing the rapid determination of the
total number of microorganisms in must and
wine, and the rapid identification of some of
them. Microscope observation, supported by

counting the chamber cells (e.g., the Biirker
chamber) and methylene blue staining, gives
rapid information on total cells, viability, and,
in a few cases, allows identification of the
genus. For example, genus Hanseniaspora and
Saccharomycodes (Saccharomycodes ludwigii)
can be easily identified by their characteristic
lemon-shape morphology and distinguished by
their size, with Saccharomycodes being much
larger than Hanseniaspora (810 and 15-20 pm,
respectively). Schizosaccharomyces is also rec-
ognized due to their fission reproduction.
However, overall, the other wine-related species
have the anonymous ovoid shape with a bud-
ding reproduction and are indistinguishable
from microscope observations. Figure 28.1
shows some species observed using the optical
microscope.

Most of the bacteria grown in wine can be
isolated by traditional microbiological tech-
niques using nutrient agar media. The most
common used medium for LAB is MRS (deMan
Rogosa Sharpe broth), sometimes added with
20% tomato (or apple or grape) juice.

Information on the morphological and
physiological characteristics and on the evolu-
tion of taxonomic and systematic informa-
tion related to yeasts can be followed in the
constantly updated editions of The Yeast: A
Taxonomic Study (Kurtzman et al., 2011) and
for bacteria in Bergey’s Manual of Systematic
Bacteriology (Vos et al., 2009).

The main characteristics of the genera (yeast
and bacteria) found in wine are displayed in
Table 28.1.

28.6 Microbial identification
by molecular methods

In the last two decades, DNA-based diagnostic
techniques have revolutionized the study of
microorganisms, and new methods are continu-
ously being developed for the molecular
identification and characterization of yeast and
bacteria (reviewed in Ruiz et al, 2000; Pozo-
Bayén et al., 2009; Fernandez-Espinar et al.,
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Figure 28.1 Yeast species observed under microscope: (a) Saccharomyces bayanus, (b) Dekkera bruxellensis, (c) Torulaspora

delbrueckii.

2011; Ivey and Phister, 2011). Table 28.2 displays
the main molecular identification techniques
for microorganisms of wine.

Molecular methods can be direct or indirect.
In the latter, the microorganisms have to be cul-
tivated on agar media, before the species and
their frequency can be subsequently determined
by molecular analysis of DNA extracted from
a random sample of the colonies grown. This
allows an accurate determination at the species
level and sometimes a subspecific characteriza-
tion; however, it has the drawbacks of the time
consumed and its incapability to detect viable
but non-cultivatable (VBNC) cells (Millet and
Lonvaud-Funel, 2000).

In direct methods, molecular analysis is per-
formed on the sample (must or wine) without

prior cultivation, reducing the time needed
and allowing the detection of non-cultivatable
species. One drawback is the difficulties in
differentiating viable from dead cells, as the
target DNA (and in some case also RNA) per-
sists after the death of the microorganisms
(Hierro et al., 2006).

Recently the metagenomic approach has
been applied to the study of microbial commu-
nities in ecosystems, providing a great insight
into the processes responsible for microbial
diversity; for example, it has been shown that
the microbial population is strongly related to
climatic conditions, grape variety, and vineyard
environmental conditions (Bokulich ef al.,
2014). These authors concluded that there is a
unique microbial pattern that influences the
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Table 28.1 Main species and characteristics of must/wine related species: (A) yeasts; (B) bacteria.

(A) Yeasts
Genus Morphology Cell size (um) Main species in wine
Saccharomyces Spherical 5-10x5-12 S. cerevisiae
Elongated S. bayanus
S. exiguus
S. pastorianus
S. paradoxus
Candida Ellipsoidal 2.2-3.0x3.0-5.2 C. stellata
Elongated C. vini
C. vinaria
C. membranifacies
C. zemplinina
Debaryomyces Spherical 2-7x%2.4-85 D. hansenii
Short oval
Hanseniaspora Lemon shape, 1.5-5%x2.5-11.5 H. guillermondii
elongated H. osmophila
H. uvarum
H. vinae
Kluyveromyces Ellipsoidal 3-6.5x5.5-8 K. lactis
Spheroidal K. marxianus
K. thermotollerans
Metschnikowia Globose : 2.5-5x4-7 M. pulcherrima
Elongated
Pichia Ovoidal 1.8-4.5%x2.5-17 P anomala
Elongated P fermentans
P membranifaciens
Saccharomycodes Elongated 4-7x8-23 S. ludwigi
Lemon shaped
Schizosaccharomyces Globose 3-5x5-15-24 S. pombae
Ellipsoidal S. japonicus
Torulaspora Ellipsoidal 2.5-65%2.5-7 T. delbrueckii
Zygosaccharomyces Ovoidal 3.5-7x5.5-14 Z. balii
Ellipsoidal Z. bisporus
Z. rouxii
Brettanomyces Ellipsoidal 2-7%3.5-18 B. bruxellensis
Elongated B. anomalus
(B) Bacteria
Genus Morphology Cell size (uym) Main species in wine
Lactobacillus Rods Single, 0.5-0.7x1-10 L. delbrueckii
pair L. casef
chains L. plantarum
L. hilgardii
L. brevis
L. buchneri

L, fermentum

(Continued)
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Table 28.1 (Continued)

Oenococcus

Pediococcus

Leuconostoc

Acetobacter

Gluconobacter

Coccus Pairs 0.5-0.6x0.7-0.8 0. oeni
chains
Coccus Tetrads 05%1.1 R damnosus
pairs P parvulus
P pentosaceus
Coccus 0.5-0.7x0.7-1.2 Leuconostoc
mesenteroides
Ellipsoidal Single 0.6-1x2-4 A. aceti
Rod-shaped pair A. pasteurianus
Ovoid Single 0.5-0.8x0.9-4.2 G. oxydans
pair

Table 28.2 Molecular methods used to identify wine microorganisms.

Technique Level of Microorganism Reference
identification
PCR- species specific Species Oenococcus oeni Zapparoli et al.,, 1998
Saccharomyces cerevisiae, Josepa et al,, 2000
S. bayanus
Zygosaccharomyces Harrison et al,, 2011
Brettanomyces Phister and Mills, 2003
Cocolin et al., 2004
RFLP Species Yeasts Esteve-Zarzoso et al., 1999
Species Lactic acid bacteria Claisse et al., 2007
Species Acetic acid bacteria Gonzéles et al, 2004
DGGE species yeasts Cocolin et al., 2001
lactic acid bacteria Renouf et al,, 2006
Lopez et al., 2003
acetic acid bacteria De Vero et al,, 2006
PFGE strain Oenococcus oenj Larisika et al., 2008
Brettanomyces Miot-Sertier and Lonvaud-Funnel, 2007
Saccharomyces Vaugan-Martini et al.,, 1993
microsatellite strain 5. cerevisiae Legras et al,, 2005
strain 5. cerevisiae Vaudano and Garcia-Moruno, 2008
interdelta region strain S. cerevisiae Legras and Karst, 2003
mtDNA strain S. cerevisiae Guillamén et al,, 1994
RAPD species Lactobacillus Du Plessis and Dicks, 1995
species yeasts Quesada and Cenis, 1995
strain Oenococcus oeni Reguant and Bordous, 2003
strain S. cerevisiae Xufre et al., 2000

wine quality and asserts the existence of non-
random “microbial terroir”

In conclusion, yeasts and bacteria growth is
characterized by specific metabolic activities, which
determine the final organoleptic characteristics of

wine. Therefore, the possibility of knowing the
grape and wine biodiversity can help to have better
control of the fermentation processes and also
offers a tool to detect unwanted yeasts or bacteria,
which can depreciate the wine.
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The development of molecular techniques
for the identification of species and strains are
providing strong support for microbiologists
and winemakers,
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